

Robust Multi-Hop Time Synchronization in Sensor
Networks

Miklos Maroti, Branislav Kusy, Gyula Simon and Akos Ledeczi
The Institute for Software Integrated Systems, Vanderbilt University

Nashville, TN, U.S.A.

Abstract – The possibility of establishing the chronology of events in a widely distributed network, or even stronger,
the clock synchronization of all nodes in the network is often needed for applications of wireless sensor networks
(WSN). In this paper we describe the Flooding Time Synchronization Protocol (FTSP) that provides clock
synchronization service in such networks. The protocol was designed to utilize low communication bandwidth, scale
well for medium sized multi-hop networks, and be robust against topology changes and node failures. The
robustness of the protocol is due to the periodic radio broadcast of synchronization messages and the implicit
dynamic topology update. MAC-layer time-stamping, comprehensive compensation of errors and linear regression
are used to achieve high accuracy of the clock synchronization. The data from a comprehensive multi-hop
experiment shows that the average network-wide synchronization error is less than two microseconds per hop. The
protocol was further validated as part of our countersniper system that was field tested in a US military facility.

1. Introduction
The unique characteristics of the emerging
wireless sensor network (WSN) domain,
especially the severe resource constraints
associated with the individual nodes, demand the
reevaluation of distributed algorithms well
established over a long period of time, and the
design of new solutions for problems once
considered to be solved.

One of the basic middleware services of sensor
networks is network-wide time synchronization.
Time synchronization helps to keep the data
consistent by resolving redundant detection of the
same event; it also supports more effective
coordination and communication. Emerging
applications of WSN that use time
synchronization are described in [8], [9], and
[10]. However, the memory, bandwidth,
computational and power constraints of the
individual nodes, together with the requirements
for robustness to node failures prohibit the use of
traditional algorithms such as Mill’s NTP [4].

There are also numerous time synchronization
protocols developed specifically to WSN
applications with the special requirements of
sensor networks in mind. The best know
protocols are the RBS [1] and the TPSN
algorithms [2].

The RBS approach uses broadcasted
synchronization messages to synchronize the
receivers to each other (but not to the sender).
Therefore RBS needs time-stamping only on the
receiver side, thus, it eliminates error sources as
the access and the send times. RBS does not
compensate for byte alignment, an important error
source on the targeted MICA platform. The
greatest innovation of the RBS time-stamping of a
reference broadcast by two receivers is that it
eliminates all sender side non-determinism.

The TPSN approach eliminates errors caused by
access time, byte alignment time and propagation
time by making use of the implicit
acknowledgments. Additional accuracy is gained
by time-stamping each radio message multiple
times and averaging these time-stamps. Currently
the Mica2 platform does not support implicit
acknowledgments making TPSN hard to port to
the platform. Another disadvantage of TPSN is
that a message-acknowledgement pair is used for
a pair of nodes prohibiting the use of message
broadcasts resulting in higher communication
overhead.

The reported accuracy of the RBS time-stamping
is ~11� s. Least square linear regression is used to
compensate the effects of clock drifts which

results in 7.4� s average error between two motes
after one minute. The multi-hop scenario involves
the local time transferring through the
intermediary nodes. However, time
synchronization was carried out PDAs, not the
motes. The authors of TPSN algorithm
implemented both TPSN and RBS on the Mica
platform using a 4 MHz clock for time-stamping.
The resulting pair wise average errors were
16.9� s for TPSN and 29.1� s for RBS.

The goal of the propose Flooding Time
Synchronization Protocol (FTSP) is to achieve a
network wide synchronization error in the micro-
second range and to provide scalability up to
hundreds of nodes, and at the same time being
robust to network topology changes and node
failures. The algorithm utilizes broadcasting to
obtain time synchronization reference points
between the sender and its neighbors. Nodes
broadcast time synchronization messages
periodically, and synchronize their clocks to that
of an elected leader. When the leader fails
sending messages for a certain time period, a new
leader is elected automatically.

To achieve the low synchronization errors we use
the following concepts to compensate for the
errors: MAC layer time-stamping [7], [2] with
several jitter reducing techniques, and skew
compensation with multiple time-stamps and
linear regression [1]. While these ideas are not
completely new, their unique combination and its
effective implementation yield significantly better
precision than the existing algorithms RBS [1]
and TPSN [2] (implemented on the Mica/Mica2
platforms [5] running the TinyOS operating
system [3]). Furthermore, the utilized broadcast-
based synchronization protocol along with the
skew compensation scheme help keep
communication overhead low. Finally, the
implicit dynamic topology handling of the FTSP
provides fast convergence and robustness.

2. Flooding Time Synchronization
Protocol

The FTSP uses a single radio message time-
stamped at both the sender and the receiver sides
to achieve time synchronization between a sender

and all of its neighbors at once. The detailed
analysis of the error sources suggests MAC layer
time-stamping, as observed by [7], [2]. However,
a precise time-synchronization at a single point in
time is a partial solution only. Compensation for
the clock drift of the nodes is inevitable to
achieve high precision and low communication
overhead. The FTSP estimates the clock drift
using linear regression [1].

In real-world applications typically multi-hop
synchronization is required. In FTSP a single,
dynamically (re)elected node, called the root of
the network, maintains the global time and all
other nodes synchronize their clocks to the local
clock of the root. There is no explicit hierarchical
communication structure as proposed in [2], but
instead the nodes form a dynamically changing
ad-hoc structure to transfer the global time from
the root to all the nodes. This solution provides
more efficient use of the communication channel
and it also is very robust against node failures and
other topology changes.

The basic element of the FTSP is the accurate
time stamping. The FTS Protocol synchronizes
the receiver to the time provided by the sender of
the radio message. The radio message contains
the sender time-stamp which is the global time
when sending a certain byte. The receivers record
the local time of receiving the corresponding
byte. Using a radio broadcast, one radio message
provides a synchronization point (global, local
time pair) to multiple receivers. Unlike the RBS
and TPSN protocols, the time stamp of the sender
must be embedded in the currently transmitted
message.

Wireless message transmission starts with the
transmission of preamble bytes, followed by
SYNC bytes, message descriptor bytes, the actual
message data, and finally CRC bytes. During the
transmission of the preamble bytes the receiving
radio chip synchronizes itself to the carrier
frequency of the incoming signal. From the
SYNC bytes the receiver can calculate the bit
offset from the sender. This is needed to
reassemble the message with the correct byte
alignment. The message descriptor contains the
target, the length of the data and other fields, such

as information about the application layer that
needs to be notified on the receiver side. The
CRC bytes are used to verify that the message
was not corrupted.

The FTSP time stamping effectively reduces the
jitter of the interrupt handling and
encoding/decoding times by recording multiple
time stamps both on the sender and receiver sides.
The time stamps are made at the boundaries of
bytes following the SYNC bytes, by both the
transmitter and the receiver.
The jitter of interrupt handling time is mainly due
to program sections disabling interrupts on the
microcontroller for short amount of time. This
error is not Gaussian and can be successfully
eliminated by taking the minimum of the time
stamps. The jitter of encoding and decoding times
can be alleviated by taking the average of these
‘interrupt error’ corrected time stamps. On the
receiver side this final averaged time stamp must
be further corrected by the byte alignment time
that can be computed from the transmission speed
and the bit offset. The number of bytes we
timestamp puts an upper limit on the achievable
error correction using this technique. However,
with only 6 time stamps, the time stamping
precision can be improved from 25� s to 1.4� s on
the Mica2 platform.

A single synchronization message would be
sufficient to synchronize two nodes if the offset
of their local times were constant. However, the
frequency differences of the crystals used in
Mica2 motes introduce drifts up to 40� s in one
second time period. This would mandate
continuous re-synchronization with a period of
one second to keep the error in a micro-second
range, which is not feasible in our domain.
Therefore, we need to estimate the drift of the
receiver clock with respect to the sender clock.

If the short term stability of the clocks is good,
the offset between the two clocks changes in a
linear fashion and the linear regression can be
used to estimate the offset. We verified the
stability of the 7.37 MHz Mica2 clock by sending
a reference broadcast, which was received by two
different motes. Both motes reported the local
times of arrival of the broadcast. We calculated

the offsets of the reported times and determined
the best fit line for these offsets. The average
error of the linear regression was 0.95� s proving
the short-term stability of clock crystals.

The on-line linear regression needs to identify the
trend of the global time relative to the local time
from the data points received in the past.
Moreover, as a consequence of the memory
constraints of the platform, only a limited number
of data points can be stored. We implemented the
on-line regression on Mica2 and changed the
previous scenario to send the global times instead
of the local times. The measured average absolute
error of the global time prediction was 1.48� s in
an 18-hour experiment.

From the long-term point of view, the relative
drift of two clock crystals can change when the
temperature, humidity, or battery power level
change. The required resynchronization interval
to reach the desired precision is an important
design parameter. Our experiments showed that
this resynchronization period can go up to several
minutes.

Most elaborate WSN applications use networks
larger than one hop in radius, thus multi-hop
synchronization is necessary to achieve network-
wide time synchronization. A possible solution to
the problem is to provide a fraction of the motes
with external synchronization methods, e.g. GPS
sensors in such a way that all other motes are one
hop away from them. However, this solution is
cost prohibitive for most systems. The proposed
multi-hop FTSP can synchronize the network
without external time sources, provided that each
node has a unique identifier, the node ID.

The global time in the multi-hop FTS Protocol is
driven by the local clock of a single node, called
the root. The global time is diffused into the
network by each node periodically broadcasting
its own global time estimate. Using a modified
version of the one-hop synchronization scheme
described earlier; motes continuously synchronize
themselves to the motes that are closer to the root
than themselves. The protocol defines how to
handle information from different sources, how to
elect a root, and provides a mechanism to

overtake the responsibility of the root by another
node if the root fails.

Since there is no node in the network dedicated to
provide time reference information, the root must
be elected each time the network is started. The
election process utilizes the unique IDs of the
nodes. When a node does not receive time sync
messages for a period of time, it declares itself to
be the root and eventually starts sending time
sync messages. It is possible, of course, that more
than one node declares itself the root of the
network. The FTSP resolves this problem by
electing the mote with the lowest ID as the root of
the network in the following way. All motes
remember the ID of the root, to which they are
currently synchronized to. If a node is root, then
this variable holds its own node ID. Time
synchronization messages contain the root ID of
the sender. The time synchronization message is
discarded by the receiver if the root ID in the
message is higher than the known root ID of the
receiver. On the other hand, if the received root
ID is smaller than the currently known root ID,
then the root ID of the receiver is reset to the just
received root ID, and the receiver becomes a
regular node at this point, if it was a root before.
This guarantees that eventually no more than one
root remains in the network.

The global time information from the root can
arrive to a node along different routes. Moreover,
the precision of the global time estimate may
deteriorate over time as it is passed along the
network. Therefore, each node has to select an
appropriate subset of the received time
synchronization messages that are entered into its
regression table. Each time synchronization
message contains a sequence number, which is set
and incremented by the root each time it sends a
new message. Other nodes remember the highest
sequence number received from the root so far.
These nodes broadcast messages containing this
number. Consequently, a node considers a time
sync message new if its sequence number is
greater than the highest sequence number of the
node. ‘New’ time synchronization messages are
entered into the regression table, others are
discarded. This protocol guarantees that only one
data point will be entered into the table for each

root ID and sequence number pair, namely the
one that arrives first.

Errors caused by failing hardware or drained
batteries are the norm rather than the exception in
WSN and the FTSP needs to be robust against
these failures. Periodic broadcasting of time
synchronization messages handles the regular
node and link failures well, but does not help
when the root fails. The following mechanism,
similar to the initial leader election process, is
used to replace the root in case of its failure. Each
node remembers the most recent time when the
root was active. A good approximation of this is
the time when the last new time sync message
arrived (the stored highest sequence number was
changed). Each node will time out if the root has
not been active for a certain time period and will
declare itself to be the root. Therefore, all nodes
in the network will eventually time-out, and the
election process will resolve multiple root
conflicts.

Nodes may join and leave the network
dynamically, and some of them are possibly
mobile. The only assumption we make here is that
the network remains connected at all times. The
effect of removing the root from the network was
explored before. Another problematic case is
when a new node M with smaller ID than the root
is switched on. If M transmitted its local time as a
new global time immediately after switching on,
all the nodes in the network would get out of the
synchronization. Therefore, each newly
introduced node first waits for a certain time
period, gathers data for the linear regression and
determines the offset and skew of its own local
clock from the global time. This way M is able to
overtake the role of the old root and send a global
time that is close to the old global time in such a
way that the network does not get out of
synchronization.

Note that since time sync messages with the
lowest root ID and highest sequence number
flood the network, topology changes do not
hinder the algorithm provided the network stays
connected.

The speed of information propagation (root ID
and global time) to all nodes of the network is
very important in the case of node failures,
system startup and resume from powered down
mode. Node failures can be handled very
smoothly because the remaining nodes are
already synchronized. The initial phases of
switching on or waking up the system from sleep
mode are more critical. There exists a physical
limit on the time it takes for the network to
synchronize. If Ts is the time period every node
broadcasts a time synchronization message and
radius is the maximum hop-count of nodes to the
root, then the expected value of time it takes the
network to learn about the identity of the root is
radius*T s/2. To get an estimate of both the skew
and offset of the local clock, nodes need at least
two data points in the regression table. Therefore,
it takes approximately radius*T s*2 time to
synchronize all the nodes in the network. This
illustrates a tradeoff between power consumption
and speed of convergence: decreasing the
synchronization period increases the number of
messages sent in a certain time period, but allows
faster convergence.

3. Evaluation
The implementation of FTSP on the Mica and
Mica2 platforms that was used to carry out the
experiments described in this section is available
on internet (see [6]). We tested the protocol
focusing on the most problematic scenarios, such
as switching off the root of the network, removing
a substantial part of the nodes from the network,
so that the remaining nodes still formed a
connected network, and switching on a
substantial number of the new nodes in the
network.

The experiment scenario involves 64 Mica2
motes deployed in 8x8 grid in such way that each
mote can communicate only with its direct
neighbors. Furthermore, the node with the
smallest id (ID1) is located in the middle of the
network and the node with the second smallest id
(ID2) is at the edge of the network. This means
that ID1 will eventually become the root of the
network and ID2 will become the root if ID1 dies.
The maximum hop distance between ID1 and ID2

represents the worst case scenario if the root ID1

dies.

Two other motes were used in the experiment, the
reference broadcaster, and the base station. The
nodes time-stamped the broadcaster’s messages
with the global time and sent these global time-
stamps to the base station. The base station only
forwarded all the data to the laptop. The topology
of the 64 nodes network was enforced in software
and so all the nodes could be placed within the
radio range from the reference broadcaster.

Each of 64 nodes broadcasted one time
synchronization message per 30 seconds. The
reference broadcaster queried the global time
from all nodes in the network once per 30
seconds.

We performed the following experiment:

• at 0:00 all motes were turned on;
• at 0:41 the root with ID1 was switched off;
• from 1:12 until 1:42 randomly selected

motes were switched off and back on, one
per 30s;

• at 1:47 the motes with odd node IDs were
switched off (half of the nodes are removed);

• at 2:02 the motes with odd node IDs were
switched back on (100% new nodes are
introduced);

• at 2:13 the second root with ID2 is switched
off;

The nodes reported back to the base station
whether they were synchronized (i.e. have enough
values in their regression table) and what the
global time was at the arrival of the reference
broadcast message. For each reference broadcast
round, we calculated the percentage of the motes
that were synchronized out of those that replied.
We analyzed the time synchronization error by
first calculating the average G of reported global
times and then for each node calculating the
difference between the reported global time and
G. Consequently, we computed the average and
maximum of the absolute values of these
differences, called the average and maximum time
synchronization error, respectively. The resulting
graph is shown in Figure 1.

The beginning of the experiment has shown
the convergence of the algorithm: during the
first 3 minutes the nodes were not
synchronized, because none of them declared
itself to be the root. The nodes were switched
on approximately at the same time, so in the
next few minutes many of them timed out and
became the roots of the network. This was the
reason why the average and maximum
synchronization errors soared during this time
period. However, after the 6th minute the
election process has completed and only a
single root remained (ID1).The number of
synchronized nodes started to grow steadily,
and the average and maximum errors became
approximately 2.5� s and 7.5� s, respectively.
Complete synchronization has been achieved
in 10 minutes as indicated by the percentage
of synchronized motes reaching 100%.

When the root ID1 was switched off, no impact on
the network was immediately observable. What
happened is that the global time had not been
updated for a certain period of time until each
node timed out and declared itself to be the root.

The election process again resulted in a single
root ID2 eventually. However, the error stayed
low during this time because nodes did not
discard their old offset and skew estimates and
the new root was broadcasting its estimation of
the old global time. This caused slight
deterioration of the maximum and average errors
until all nodes calculated more accurate drift
estimates based on the messages broadcasted by
the new root. In the last part of the experiment
some of the nodes were removed and new ones
were introduced. The impact of these operations
on the average and maximum errors was minimal.
We can observe that the number of synchronized
nodes decreased whenever a new node was
switched on because it takes some time for the
new node to obtain enough data to get
synchronized. Worth noticing is also the fact that
the network recovered faster after the root ID2
was switched off than after ID1. This was also
expected since the root which took over after ID2
was 1 hop away from ID2.

The 64-mote 7-hop network synchronized in 10
minutes and the average time synchronization
error stayed below 11.7� s. If we divide it by
number of hops, we get the average error of 1.7� s

Figure 1 Experimental results on an 8x8 grid.

per hop. The maximum time synchronization
error was below 38� s, which was observed only
when the root was switched off. Switching off
and introducing the new nodes did not introduce a
significant time synchronization error.

4. Conclusions
Wireless sensor network applications (WSN),
similarly to other distributed systems, often
require a scalable time synchronization service
enabling data consistency and coordination. We
have presented our time synchronization approach
for WSN, the Flooding Time Synchronization
Protocol.
The protocol was implemented on the UCB Mica
and Mica2 platforms running TinyOS. The
precision of 1.5� s in the single hop scenario and
the average precision of 1.7� s per hop in the
multi-hop case were shown by providing
experimental results. This performance is
significantly better than those of other existing
time synchronization approaches on the same
platform.

Furthermore, the protocol was tested and its
performance was verified in both an experimental
setup and a real-world application [11]. Although
our protocol was implemented and tested for a
specific platform, the approach used is general
and we believe it can be applied to other WSN
platforms and different operating systems.

5. References

[1] J. Elson, L. Girod and D. Estrin, “Fine-
Grained Network Time Synchronization using
Reference Broadcasts,” Proceedings of the fifth
symposium OSDI ‘02, December 2002.
[2] S. Ganeriwal, R. Kumar, M. B. Srivastava,
“Timing-Sync Protocol for Sensor Networks,”
SenSys ’03, November 2003
[3] TinyOS, http://webs.cs.berkeley.edu/tos/
[4] D. L. Mills. “Internet Time Synchronization:
The Network Time Protocol” In Z. Yang and T.
A. Marsland, Global States and Time Distributed
Systems. IEEE Computer Society Press, 1994
[5] J. Hill and D. Culler, “Mica: A Wireless
Platform for Deeply Embedded Networks”, IEEE
Micro., vol 22(6), Nov/Dec 2002
[6] The TinyOS implementation of the FTSP:
http://cvs.sourceforge.net/viewcvs.py/tinyos/minit
asks/02/vu/tos/lib/TimeSync/
[7] Woo, A. and Culler, D.: “A Transmission
Control Scheme for Media Access in Sensor
Networks,” Proc. Mobicom, 2001
[8] A. Mainwaring, J. Polastre, R. Szewczyk, D.
Culler, J. Anderson , “Wireless Sensor Networks
for Habitat Monitoring”, WSNA'02, Atlanta, GA
[9] L. Schwiebert, S. K. S. Gupta and J.
Weinmann, “Research Challenges in Wireless
Networks of Biomedical Sensors”, SIGMOBILE
2001
[10] H. Yang and B. Sikdar, A Protocol for
Tracking Mobile Targets using Sensor Networks,
IEEE Workshop on Sensor Network Protocols
and Applications, 2003
[11] Vanderbilt Shooter Localization website:
http://www.isis.vanderbilt.edu/projects/nest/appli
cations.html

