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Abstract – The possibility of establishing the chronology of events in a widely distributed network, or even stronger, 
the clock synchronization of all nodes in the network is often needed for applications of wireless sensor networks 
(WSN). In this paper we describe the Flooding Time Synchronization Protocol (FTSP) that provides clock 
synchronization service in such networks. The protocol was designed to utilize low communication bandwidth, scale 
well for medium sized multi-hop networks, and be robust against topology changes and node failures. The 
robustness of the protocol is due to the periodic radio broadcast of synchronization messages and the implicit 
dynamic topology update. MAC-layer time-stamping, comprehensive compensation of errors and linear regression 
are used to achieve high accuracy of the clock synchronization. The data from a comprehensive multi-hop 
experiment shows that the average network-wide synchronization error is less than two microseconds per hop. The 
protocol was further validated as part of our countersniper system that was field tested in a US military facility. 
 

1. Introduction 
The unique characteristics of the emerging 
wireless sensor network (WSN) domain, 
especially the severe resource constraints 
associated with the individual nodes, demand the 
reevaluation of distributed algorithms well 
established over a long period of time, and the 
design of new solutions for problems once 
considered to be solved.  
 
One of the basic middleware services of sensor 
networks is network-wide time synchronization. 
Time synchronization helps to keep the data 
consistent by resolving redundant detection of the 
same event; it also supports more effective 
coordination and communication. Emerging 
applications of WSN that use time 
synchronization are described in [8], [9], and 
[10]. However, the memory, bandwidth, 
computational and power constraints of the 
individual nodes, together with the requirements 
for robustness to node failures prohibit the use of 
traditional algorithms such as Mill’s NTP [4].  
 
There are also numerous time synchronization 
protocols developed specifically to WSN 
applications with the special requirements of 
sensor networks in mind. The best know 
protocols are the RBS [1] and the TPSN 
algorithms [2].  

 
The RBS approach uses broadcasted 
synchronization messages to synchronize the 
receivers to each other (but not to the sender). 
Therefore RBS needs time-stamping only on the 
receiver side, thus, it eliminates error sources as 
the access and the send times. RBS does not 
compensate for byte alignment, an important error 
source on the targeted MICA platform. The 
greatest innovation of the RBS time-stamping of a 
reference broadcast by two receivers is that it 
eliminates all sender side non-determinism.  
 
The TPSN approach eliminates errors caused by 
access time, byte alignment time and propagation 
time by making use of the implicit 
acknowledgments. Additional accuracy is gained 
by time-stamping each radio message multiple 
times and averaging these time-stamps. Currently 
the  Mica2 platform does not support implicit 
acknowledgments making TPSN hard to port to 
the platform. Another disadvantage of TPSN is 
that a message-acknowledgement pair is used for 
a pair of nodes prohibiting the use of message 
broadcasts resulting in higher communication 
overhead. 
 
The reported accuracy of the RBS time-stamping 
is ~11� s. Least square linear regression is used to 
compensate the effects of clock drifts which 



 

results in 7.4� s average error between two motes 
after one minute. The multi-hop scenario involves 
the local time transferring through the 
intermediary nodes. However, time 
synchronization was carried out PDAs, not the 
motes. The authors of TPSN algorithm 
implemented both TPSN and RBS on the Mica 
platform using a 4 MHz clock for time-stamping. 
The resulting pair wise average errors  were 
16.9� s for TPSN and 29.1� s for RBS. 
 
The goal of the propose Flooding Time 
Synchronization Protocol (FTSP) is to achieve a 
network wide synchronization error in the micro-
second range and to provide scalability up to 
hundreds of nodes, and at the same time being 
robust to network topology changes and node 
failures. The algorithm utilizes broadcasting to 
obtain time synchronization reference points 
between the sender and its neighbors. Nodes 
broadcast time synchronization messages 
periodically, and synchronize their clocks to that 
of an elected leader. When the leader fails 
sending messages for a certain time period, a new 
leader is elected automatically.  
 
To achieve the low synchronization errors we use 
the following concepts to compensate for the 
errors: MAC layer time-stamping [7], [2] with 
several jitter reducing techniques, and skew 
compensation with multiple time-stamps and 
linear regression [1]. While these ideas are not 
completely new, their unique combination and its 
effective implementation yield significantly better 
precision than the existing algorithms RBS [1] 
and TPSN [2] (implemented on the Mica/Mica2 
platforms [5] running the TinyOS operating 
system [3]). Furthermore, the utilized broadcast-
based synchronization protocol along with the 
skew compensation scheme help keep 
communication overhead low. Finally, the 
implicit dynamic topology handling of the FTSP 
provides fast convergence and robustness.  
 

2. Flooding Time Synchronization 
Protocol 

The FTSP uses a single radio message time-
stamped at both the sender and the receiver sides 
to achieve time synchronization between a sender 

and all of its neighbors at once. The detailed 
analysis of the error sources suggests MAC layer 
time-stamping, as observed by [7], [2]. However, 
a precise time-synchronization at a single point in 
time is a partial solution only. Compensation for 
the clock drift of the nodes is inevitable to 
achieve high precision and low communication 
overhead. The FTSP estimates the clock drift 
using linear regression [1]. 
 
In real-world applications typically multi-hop 
synchronization is required. In FTSP a single, 
dynamically (re)elected node, called the root of 
the network, maintains the global time and all 
other nodes synchronize their clocks to the local 
clock of the root. There is no explicit hierarchical 
communication structure as proposed in [2], but 
instead the nodes form a dynamically changing 
ad-hoc structure to transfer the global time from 
the root to all the nodes. This solution provides 
more efficient use of the communication channel 
and it also is very robust against node failures and 
other topology changes.  
 
The basic element of the FTSP is the accurate 
time stamping. The FTS Protocol synchronizes 
the receiver to the time provided by the sender of 
the radio message. The radio message contains 
the sender time-stamp which is the global time 
when sending a certain byte. The receivers record 
the local time of receiving the corresponding 
byte. Using a radio broadcast, one radio message 
provides a synchronization point (global, local 
time pair) to multiple receivers. Unlike the RBS 
and TPSN protocols, the time stamp of the sender 
must be embedded in the currently transmitted 
message.  
 
Wireless message transmission starts with the 
transmission of preamble bytes, followed by 
SYNC bytes, message descriptor bytes, the actual 
message data, and finally CRC bytes. During the 
transmission of the preamble bytes the receiving 
radio chip synchronizes itself to the carrier 
frequency of the incoming signal. From the 
SYNC bytes the receiver can calculate the bit 
offset from the sender. This is needed to 
reassemble the message with the correct byte 
alignment. The message descriptor contains the 
target, the length of the data and other fields, such 



 

as information about the application layer that 
needs to be notified on the receiver side. The 
CRC bytes are used to verify that the message 
was not corrupted.  
 
The FTSP time stamping effectively reduces the 
jitter of the interrupt handling and 
encoding/decoding times by recording multiple 
time stamps both on the sender and receiver sides. 
The time stamps are made at the boundaries of 
bytes following the SYNC bytes, by both the 
transmitter and the receiver.  
The jitter of interrupt handling time is mainly due 
to program sections disabling interrupts on the 
microcontroller for short amount of time. This 
error is not Gaussian and can be successfully 
eliminated by taking the minimum of the time 
stamps. The jitter of encoding and decoding times 
can be alleviated by taking the average of these 
‘interrupt error’ corrected time stamps. On the 
receiver side this final averaged time stamp must 
be further corrected by the byte alignment time 
that can be computed from the transmission speed 
and the bit offset. The number of bytes we 
timestamp puts an upper limit on the achievable 
error correction using this technique.  However, 
with only 6 time stamps, the time stamping 
precision can be improved from 25� s to 1.4� s on 
the Mica2 platform.  
 
A single synchronization message would be 
sufficient to synchronize two nodes if the offset 
of their local times were constant. However, the 
frequency differences of the crystals used in 
Mica2 motes introduce drifts up to 40� s in one 
second time period. This would mandate 
continuous re-synchronization with a period of 
one second to keep the error in a micro-second 
range, which is not feasible in our domain. 
Therefore, we need to estimate the drift of the 
receiver clock with respect to the sender clock. 
 
If the short term stability of the clocks is good, 
the offset between the two clocks changes in a 
linear fashion and the linear regression can be 
used to estimate the offset. We verified the 
stability of the 7.37 MHz Mica2 clock by sending 
a reference broadcast, which was received by two 
different motes. Both motes reported the local 
times of arrival of the broadcast. We calculated 

the offsets of the reported times and determined 
the best fit line for these offsets. The average 
error of the linear regression was 0.95� s proving 
the short-term stability of clock crystals.  
 
The on-line linear regression needs to identify the 
trend of the global time relative to the local time 
from the data points received in the past. 
Moreover, as a consequence of the memory 
constraints of the platform, only a limited number 
of data points can be stored. We implemented the 
on-line regression on Mica2 and changed the 
previous scenario to send the global times instead 
of the local times. The measured average absolute 
error of the global time prediction was 1.48� s in 
an 18-hour experiment.  
 
From the long-term point of view, the relative 
drift of two clock crystals can change when the 
temperature, humidity, or battery power level 
change. The required resynchronization interval 
to reach the desired precision is an important 
design parameter. Our experiments showed that 
this resynchronization period can go up to several 
minutes. 
 
Most elaborate WSN applications use networks 
larger than one hop in radius, thus multi-hop 
synchronization is necessary to achieve network-
wide time synchronization. A possible solution to 
the problem is to provide a fraction of the motes 
with external synchronization methods, e.g. GPS 
sensors in such a way that all other motes are one 
hop away from them. However, this solution is 
cost prohibitive for most systems. The proposed 
multi-hop FTSP can synchronize the network 
without external time sources, provided that each 
node has a unique identifier, the node ID. 
 
The global time in the multi-hop FTS Protocol is 
driven by the local clock of a single node, called 
the root. The global time is diffused into the 
network by each node periodically broadcasting 
its own global time estimate. Using a modified 
version of the one-hop synchronization scheme 
described earlier; motes continuously synchronize 
themselves to the motes that are closer to the root 
than themselves. The protocol defines how to 
handle information from different sources, how to 
elect a root, and provides a mechanism to 



 

overtake the responsibility of the root by another 
node if the root fails.  
 
Since there is no node in the network dedicated to 
provide time reference information, the root must 
be elected each time the network is started. The 
election process utilizes the unique IDs of the 
nodes. When a node does not receive time sync 
messages for a period of time, it declares itself to 
be the root and eventually starts sending time 
sync messages. It is possible, of course, that more 
than one node declares itself the root of the 
network. The FTSP resolves this problem by 
electing the mote with the lowest ID as the root of 
the network in the following way. All motes 
remember the ID of the root, to which they are 
currently synchronized to. If a node is root, then 
this variable holds its own node ID. Time 
synchronization messages contain the root ID of 
the sender. The time synchronization message is 
discarded by the receiver if the root ID in the 
message is higher than the known root ID of the 
receiver. On the other hand, if the received root 
ID is smaller than the currently known root ID, 
then the root ID of the receiver is reset to the just 
received root ID, and the receiver becomes a 
regular node at this point, if it was a root before. 
This guarantees that eventually no more than one 
root remains in the network. 
 
The global time information from the root can 
arrive to a node along different routes. Moreover, 
the precision of the global time estimate may 
deteriorate over time as it is passed along the 
network. Therefore, each node has to select an 
appropriate subset of the received time 
synchronization messages that are entered into its 
regression table. Each time synchronization 
message contains a sequence number, which is set 
and incremented by the root each time it sends a 
new message. Other nodes remember the highest 
sequence number received from the root so far. 
These nodes broadcast messages containing this 
number. Consequently, a node considers a time 
sync message new if its sequence number is 
greater than the highest sequence number of the 
node. ‘New’ time synchronization messages are 
entered into the regression table, others are 
discarded. This protocol guarantees that only one 
data point will be entered into the table for each 

root ID and sequence number pair, namely the 
one that arrives first.  
 
Errors caused by failing hardware or drained 
batteries are the norm rather than the exception in 
WSN and the FTSP needs to be robust against 
these failures. Periodic broadcasting of time 
synchronization messages handles the regular 
node and link failures well, but does not help 
when the root fails. The following mechanism, 
similar to the initial leader election process, is 
used to replace the root in case of its failure. Each 
node remembers the most recent time when the 
root was active. A good approximation of this is 
the time when the last new time sync message 
arrived (the stored highest sequence number was 
changed). Each node will time out if the root has 
not been active for a certain time period and will 
declare itself to be the root. Therefore, all nodes 
in the network will eventually time-out, and the 
election process will resolve multiple root 
conflicts.  
 
Nodes may join and leave the network 
dynamically, and some of them are possibly 
mobile. The only assumption we make here is that 
the network remains connected at all times. The 
effect of removing the root from the network was 
explored before. Another problematic case is 
when a new node M with smaller ID than the root 
is switched on. If M transmitted its local time as a 
new global time immediately after switching on, 
all the nodes in the network would get out of the 
synchronization. Therefore, each newly 
introduced node first waits for a certain time 
period, gathers data for the linear regression and 
determines the offset and skew of its own local 
clock from the global time. This way M is able to 
overtake the role of the old root and send a global 
time that is close to the old global time in such a 
way that the network does not get out of 
synchronization.  
 
Note that since time sync messages with the 
lowest root ID and highest sequence number 
flood the network, topology changes do not 
hinder the algorithm provided the network stays 
connected. 
 



 

The speed of information propagation (root ID 
and global time) to all nodes of the network is 
very important in the case of node failures, 
system startup and resume from powered down 
mode. Node failures can be handled very 
smoothly because the remaining nodes are 
already synchronized. The initial phases of 
switching on or waking up the system from sleep 
mode are more critical. There exists a physical 
limit on the time it takes for the network to 
synchronize. If Ts is the time period every node 
broadcasts a time synchronization message and 
radius is the maximum hop-count of nodes to the 
root, then the expected value of time it takes the 
network to learn about the identity of the root is 
radius*T s/2. To get an estimate of both the skew 
and offset of the local clock, nodes need at least 
two data points in the regression table. Therefore, 
it takes approximately radius*T s*2 time to 
synchronize all the nodes in the network. This 
illustrates a tradeoff between power consumption 
and speed of convergence: decreasing the 
synchronization period increases the number of 
messages sent in a certain time period, but allows 
faster convergence.  
 

3. Evaluation 
The implementation of FTSP on the Mica and 
Mica2 platforms that was used to carry out the 
experiments described in this section is available 
on internet (see [6]). We tested the protocol 
focusing on the most problematic scenarios, such 
as switching off the root of the network, removing 
a substantial part of the nodes from the network, 
so that the remaining nodes still formed a 
connected network, and switching on a 
substantial number of the new nodes in the 
network.  

The experiment scenario involves 64 Mica2 
motes deployed in 8x8 grid in such way that each 
mote can communicate only with its direct 
neighbors. Furthermore, the node with the 
smallest id (ID1) is located in the middle of the 
network and the node with the second smallest id 
(ID2) is at the edge of the network. This means 
that ID1 will eventually become the root of the 
network and ID2 will become the root if ID1 dies. 
The maximum hop distance between ID1 and ID2 

represents the worst case scenario if the root ID1 

dies. 
 
Two other motes were used in the experiment, the 
reference broadcaster, and the base station. The 
nodes time-stamped the broadcaster’s messages 
with the global time and sent these global time-
stamps to the base station. The base station only 
forwarded all the data to the laptop. The topology 
of the 64 nodes network was enforced in software 
and so all the nodes could be placed within the 
radio range from the reference broadcaster.  
 
Each of 64 nodes broadcasted one time 
synchronization message per 30 seconds. The 
reference broadcaster queried the global time 
from all nodes in the network once per 30 
seconds.  
 
We performed the following experiment: 

• at 0:00 all motes were turned on; 
• at 0:41 the root with ID1 was switched off; 
• from 1:12 until 1:42 randomly selected 

motes were switched off and back on, one 
per 30s; 

• at 1:47 the motes with odd node IDs were 
switched off (half of the nodes are removed); 

• at 2:02 the motes with odd node IDs were 
switched back on (100% new nodes are 
introduced); 

• at 2:13 the second root with ID2 is switched 
off; 

 
The nodes reported back to the base station 
whether they were synchronized (i.e. have enough 
values in their regression table) and what the 
global time was at the arrival of the reference 
broadcast message. For each reference broadcast 
round, we calculated the percentage of the motes 
that were synchronized out of those that replied. 
We analyzed the time synchronization error by 
first calculating the average G of reported global 
times and then for each node calculating the 
difference between the reported global time and 
G. Consequently, we computed the average and 
maximum of the absolute values of these 
differences, called the average and maximum time 
synchronization error, respectively. The resulting 
graph is shown in Figure 1. 



 

The beginning of the experiment has shown 
the convergence of the algorithm: during the 
first 3 minutes the nodes were not 
synchronized, because none of them declared 
itself to be the root. The nodes were switched 
on approximately at the same time, so in the 
next few minutes many of them timed out and 
became the roots of the network. This was the 
reason why the average and maximum 
synchronization errors soared during this time 
period. However, after the 6th minute the 
election process has completed and only a 
single root remained (ID1).The number of 
synchronized nodes started to grow steadily, 
and the average and maximum errors became 
approximately 2.5� s and 7.5� s, respectively. 
Complete synchronization has been achieved 
in 10 minutes as indicated by the percentage 
of synchronized motes reaching 100%. 
 
When the root ID1 was switched off, no impact on 
the network was immediately observable. What 
happened is that the global time had not been 
updated for a certain period of time until each 
node timed out and declared itself to be the root. 

The election process again resulted in a single 
root ID2 eventually. However, the error stayed 
low during this time because nodes did not 
discard their old offset and skew estimates and 
the new root was broadcasting its estimation of 
the old global time. This caused slight 
deterioration of the maximum and average errors 
until all nodes calculated more accurate drift 
estimates based on the messages broadcasted by 
the new root. In the last part of the experiment 
some of the nodes were removed and new ones 
were introduced. The impact of these operations 
on the average and maximum errors was minimal. 
We can observe that the number of synchronized 
nodes decreased whenever a new node was 
switched on because it takes some time for the 
new node to obtain enough data to get 
synchronized. Worth noticing is also the fact that 
the network recovered faster after the root ID2 
was switched off  than after ID1. This was also 
expected since the root which took over after ID2 
was 1 hop away from ID2. 
 
The 64-mote 7-hop network synchronized in 10 
minutes and the average time synchronization 
error stayed below 11.7� s. If we divide it by 
number of hops, we get the average error of 1.7� s 

Figure 1 Experimental results on an 8x8 grid. 



 

per hop. The maximum time synchronization 
error was below 38� s, which was observed only 
when the root was switched off. Switching off 
and introducing the new nodes did not introduce a 
significant time synchronization error. 
 

4. Conclusions 
Wireless sensor network applications (WSN), 
similarly to other distributed systems, often 
require a scalable time synchronization service 
enabling data consistency and coordination. We 
have presented our time synchronization approach 
for WSN, the Flooding Time Synchronization 
Protocol.  
The protocol was implemented on the UCB Mica 
and Mica2 platforms running TinyOS. The 
precision of 1.5� s in the single hop scenario and 
the average precision of 1.7� s per hop in the 
multi-hop case were shown by providing 
experimental results. This performance is 
significantly better than those of other existing 
time synchronization approaches on the same 
platform.  
 
Furthermore, the protocol was tested and its 
performance was verified in both an experimental 
setup and a real-world application [11]. Although 
our protocol was implemented and tested for a 
specific platform, the approach used is general 
and we believe it can be applied to other WSN 
platforms and different operating systems.  
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